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Abstract—Using a digital computer the spectrum of a Gaussian
envelope pulse can be evaluated to accuracies of better than 0.01 dB

over a dynamic range of 100 dB. This technique was used to in-
vestigate the problems in existing microwave transmitters. From such
a study a low-level absorption-type modulator followed by Iinesr
power amplification is a logical method. A commercially available

p-i-n diode modulator was then measured on a microwave network
analyzer, and, from the resulting amplitude and phase data, the
spectrum was computed. The computed prediction of the spectrum

was then compared to the measured spectrum and found to agree

within 1 dB to —50 dB.

INTRODUCTION

w

ITH THE RAPIDLY increasing use of the

microwave bands, conservation of spectrum has

become a prime consideration in the design of

new systems and the maintenance of existing ones. One

solution to the problem lies with shaped pulses of con-

fined spectrum, such as the Gaussian pulses presently

being used in the VORTAC air navigation system. How-

ever, a perfect Gaussian envelope cannot be physically

realized because of its infinite length; furthermore, the

amplitude distortion and phase-modulation character-

tics inherent in the modulation of microwave power

amplifiers cause spectral spreading. In order to investi-

gate the problems of proposed confined-spectrum sys-

tems and evaluate possible solutions, a means of in-

expensive spectrum computation must be available.

IVIathematically, the spectrum of a pulse can be

simply described by its Fourier transform; perhaps not

so simple is the evaluation of the resulting integral

J

m

F(u) = f(t) cos (mct + p(t) + 67) exp (–jat)dt. (1)
—m

Previous studies [1], [2] have been directed at closed-

form solutions for (1) for specific cases of amplitude

distortion and phase shift. Since spectrum computa-

tion is a matter of evaluation of an integral, the use of a

digital computer is the logical choice over the somewhat

tedious (sometimes impossible) task of mathematically

obtaining a closed-form solution.

DIGITAL INTEGRATION

In theory [3], if a time function is sampled at the

Nyquist rate, sufficient information is available for

complete determination of the frequency spectrum;
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The variation of the integrand of (1 1) with respect to time.

however, there exists an immense gap between present

numerical techniques and the theoretical minimum.

In the case of the VORTAC Gaussian pulse, evaluation

of (1) would mean integrating for 1100 cycles of cos

(u~t+P(t) +0) (i.e., pulsewidth = 11 MS, carrier frequency

= 1000 lYfHz), or a theoretical minimum of 2200 samples

for each point of the computed spectrum. Since the only

spectrum point of interest should be near the carrier

frequency, modulation theory can be used to reduce the

complexity of the computation. In Appendix 1, through

the use of modulation theory and the additional assump-

tions of a symmetric amplitude function and a sym-

metric phase function, (1) is reduced to evaluating two

integrals (11) and (13) at the modulating frequency.

The magnitude of the spectrum is then

F(.) = till’(v) + B’(v). (2)

If we look at the form of the integrand of (11) for a

Gaussian pulse with Gaussian phase shift, the function

rapidly decays to zero (see Fig. 1). It is interesting to

note that at the frequency illustrated in Fig. 1 the

amplitude of the spectrum is 100 dB down (showing an

extreme case), and even it appears to be well behaved.

To gain some knowledge of the sampling necessary

for the accuracy and dynamic range desired, a Rom-

berg integration technique was used on the truncated

Gaussian pulse with Gaussian phase shift. The com-

1 Romberg integration [4] consists of trapezoidal rule with re-
peated interval halving and successive application of Richardson’s
extrapolation.
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TABLE I

IoOC THIS X5 A PhObhAM 10 CALCULAIIi THE SPECIWM UF A PULSk U1lH
110C CABhlEh PHASE SHIF1, USING 51 MPSON” S hULE iNIEGhAli ON
120 D1MENS1ON A(257), BC257)
130 COMNON FUNCA, FUNCB, PHASE
340 P12=6.2133165071796
150 PHASE=45 .
160 WI DTH=2.
170 NSTEP= 128
18D PHINT 100, IJIDIH, PHA5E. NSTW
190 H=WI DTH/FLOA? (N.S1 EP )
200 PHASE= PHASE* P12/361J.
J210 T=O.
220 J1=NSIE.P+l
E30 DO 20 J=l, JI
240 CALL PUL.5E(T>
250 A(J) =FUNCA
260 B(J)=WNCB
270 20 l=l+H
260c 51MP50N WEIGHIING OF DAIA POINTS c 1,4.2.4,...,2.4, II
290 Do 30 J=2. NSIEP
300 A(J1=A(J)+A(J1
310 30 B(J)= b(J)+ 13<J1
320 DO 35 J=2. NSIEP> 2
330 A(J)= A[J)+A(J)
340
350C
360
370
380
390
400
410
420C
430
440
450
460

35 B(J)= B(J>+B(J)
llEhA1 ZDN ‘1HkW6H Iiih &hLUUENCIES

DO 40 NF=l. 36,2
h-HEQ=FLOA1 CNF- 1 1*. 1
!4=P12*FhEQ
SPECIA=A( 1 )
5PEC1 SI=B( 1 )
‘s .H

SUMMA11ON OF SIMPSON h’EIGHTED lEhNS
DO 50 1=2. J1
CO SU1=COS(b*T)
SPECTA=SPECIA+A( 1 1* C05WT
SPECTB= SPECTB+B( 1 ) *COSWT

070 50 l=T+H
480 SPECTA=SPECIA* 2. *W 3.
49D 5PECTB=SPECTB*2 .*H/3.
500C DEIE1iNINES THE MAGNITUDE OF THE 5PEClkUM Al A FhEQUENCY
510 FOIiYEA=SW1 ( SIWCTA*5PEC1A +SPEC1B*5PEC1B)
520 IF(NF-2)60,7U,70
530 60 AO=FOhYEA
540 70 DB=20. *ALOOIO(FOhYEA/AO)
550 PIiINl 101, FHES4, FOI?YIZA,W3, SPECTA, SPECTB
560 40 CONTINUE
570 LO1 FUFMAT(lH ,F4. %F16. M. F9.3, F17.8. F13.8)
5S0 100 FOkMA1 <’,5PEClkUM UP A N06NAL1zED GAUSSIAN PULSE IN NO FU4AL1ZELI”,.
s90& ,, FHEWENCYW//.,PUL5E lhUNCATED AT T=+ Oh-,0. F6. 3/

600& $,GAus S1@N PHASE SHIF1 kll H ,MAx IMUM PHASE PJ4GLE,q. F6. 1,

6105 ,, DE6iiEES-/,ONUMBEH OF STEPS PEk lNIE6hAi.,~. 15/z/ -FhEQu5NcY -.
6 20& ‘,AMPL11 UDE DBm., 1 1X, ‘.COS( PHi ) SIN(PH1 )-)
630 S1OP
640 END
650c .5uBh0uTlNE THAT CalCUlateS I HE AMPLITUDE FUNCI ION AND pHAbE
660C SHIF,C FOh THE POINTS USED lN lHE NUMERIC lNTEGhAT1ON
670 SU13S10UT1NE PULSE(T>
680 COMMON FUN CA. FUNCB. PHAsE
690 GAUS!,N.EXP( -2.77258 M72224*T*1)
700 GPHASE=GAlJ5!aN* PHASE
710 FUN CA= GAUSSIY*COS CGPHASE>
720 $UNCB=GAUSSN* S1N(6PHA5L>
730 HEIUGN
740 END

putation was taken out to 14 interval halvings on a CDC

6400 (16 384 steps per integral), but the integral con-

verged to the desired accuracy in at most 256 steps in-

dicating the stability of the problem.

From the information gained by the Romberg in-

tegration, it was decided that the Simpson’s rule

algorithm for numeric integration would provide the

necessary accuracy with minimal programming effort.

A program was then written for a General Electric 400

series time-shared computer, and the case of Gaussian

phase shift was investigated. The results were then

checked against the analog computer data obtained

earlier and the available closed-form solutions [2]. As a

further check on the computer data, the pulsewidth

was increased to improve the approximation of the

true Gaussian function and an infinite series was used

to approximate the sine and cosine functions (see Ap-

pendix II). In every check made on the digital computer

generated spectrums, they were found to be accurate to

better than 0.001 dB over a dynamic range of 100 dB

and time was minimal. A sample program for the

Gaussian phase shift case is shown in Table I, and Table

II is the resulting printout of the program. The cost of

939

TABLE II
—— ..—______ . .—. ——z..—

SPECTRUM OF A NOkNALIZiTD GAUSSIAN

PULSE TRUNCATED AT T=+ OR- s2.000
GAUSSIAN PHASE SHIFT !+’l TH MAXIMUM
NUMBER OF STEPS PER INTEGHAL 1$28

FR2QuENCY
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
l.qo
1.s(0
2.00
2.20
2.4o
2.6o
2.8o
3.00
3.20
3.40

ANPL I TUDE
1.03932355
0.90673992
0.60921902
0.33254613
0.16753557
0.08604963
0.04248363
0.01910835
0.00804784
0.00334225
0.00138552
0.00055769
0.00021823
0.00008249
0.00003091
0.00001107
0.00000524
0.00000045

DB
0.000

-1.185
-4.640
-9.698

-15.853
‘21.640
-27.771
-34.711
-42.221
-49.854
-57.503
-65.404
-73.557
‘82.007
-90.533
-99.453

-105.950
-127.312

PULSE IN NOFM4LIZED FFIEQUENCY

PHASE ANGLE 4.5.0 L)EGliEES

COS(PHI)
O. 88233293
0.74964359
0.45209347
0.17759901
0.02506732
‘.02395861
-,02535621
-.01570866
-.00778604,
-.00331836
-.00122592
-.00037622
-.00008737
-.0000041 G
0.00000869
0.00000605
0.00000467
0.00000019

SIN(PHI)
0.54925589
0.51010957
0.40636174
0.28115035
0.16564962
0.08264699
0.03406573
0.01087939
0.00203597
-.00039890
-.00064556
-.00041194
-.00019998
-.00008236
-.00002966
-.00000927
-.00000236
-.00000040

the time for computing Table II was about 68 cents,

not counting the 4 min of my own time spent operating

the terminal.

ESTIMATION OF STEP SIZE

In order to determine the step size necessary for

functions for which there is no closed-form solution

(the only problems of importance), a purely numerical

method was used. Although the equation for the error

in Simpson’s rule integration is well known [5], it re-

quires the evaluation of the fourth derivative of the

integrand which is very cumbersome if the amplitude

and phase function become the least bit complicated.

Instead, the method suggested by Brittxm [6] for eval-

uation of the approximate error of SimFJson’s rule was

used:

s2n – s.
R,m = -

15

where

R,m error for 2n steps;

S,n the value of the integral 272 steps;

S. the value of the integral for n steps.

This technique gave excellent results for the Gaussian

pulse, as well as for confined-spectrum flat-top pulses.

when a step size was determined using this method, the

calculated spectrum for the flat-top pulse always was

within the error estimation when compared to avail-

able closed-form solutions [7]. In all of the amplitude

and phase functions tried so far, never over 20 steps per

cycle of the highest frequency term were necessary to

gain accuracy of better than 0.01 dB out to – 100 dB.

APPLICATION OF SPILCTRUM COMPUTATION

Obviously, the previous method of spectrum com -

putation is fast and inexpensive, but it is only a tool in

investigating problems in existing anti proposed sys-

tems. To illustrate the use of this approach, the spectral

performance of the present VORTAC was investigatecl.
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Fig. 2. Measured spectrum of a VORTAC
microwave power amplifier.

The measured spectrum plot in Fig. 2 was obtained from

a previous study [8].

With the advent of negative-grid gun klystrons the

problems of realizing the desired amplitude function is

greatly simplified, but the measured performance of

this amplifier by no means lives up to the spectrum of a

true Gaussian pulse. Although the appearance of lobes

would indicate that the Gaussian pulse was truncated

too soon, the computed spectrum for the pulsewidth

used indicated the lobes caused by truncation should be

more than 100 dB down.

When a klystron is amplitude modulated, some angle

modulation will occur because, like most microwave

devices, the klystron relies on transit time for its oper-

ation. For this reason the effect of phase modulation

was considered as a possible cause of the wide spectrum

shown in Fig. 2. “The spectrum plots in Fig. 3, which

show the general broadening of spectrum associated

with the addition of Gaussian carrier phase shift, were

obtained from digital computer data. This general

broadening does not account for the lobes which occur

in the measured curve. As another possibility the effect

of a cosine-squared phase function was considered, In

Fig. 4 the spectrum of the Gaussian pulse with cosine-

squared phase shift deviates drastically from the form

seen in Fig. 3. The cosine-squared function is very sim-

ilar in appearance to the Gaussian as illustrated in the

normalized amplitude versus phase graph in Fig. 5. In

light of the accuracy of measuring carrier phase shift at

the time of the design of the VORTAC system, it is

questionable if the difference between Gaussian and

cosine-squared phase shift could have been detected in

the laboratory. Yet it appears that the computed spec-

trum from the cosine-squared phase shift much more

closely approximates the measured spectrum data than

the Gaus~ian phase shift case.

r’

-3.0 -w - Lo 0 1,0 2,0 3.0

NORMALIZED FREQUENCY

Fig. 3. Spectra of Gaussian pulses with
Gaussian phase shift.

NORMALIZED FREQUENCY

(

Fig. 4. Spectra of Gaussian pulses with
cosine-squared phase shift.
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Fig. 7. Cosine-squared bias current pulse supplied toap-i-n diode
modulator to produce a nearly Gaussian envelope 3.1-,us pulse at
the output.
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Fig. 5. Amplitude versus phase relationship for a Gaussian pulse
with either Gaussian orcosine-squdred phase shift.

Fig. 8. Measured spectrum at the output of the p-i-n diode modu-
lator with the envelope adjusted to 3.1 ps nearlY. Gaussian
shape.

h.
Y
w

Fig. 6, Performance of the HP8731b p-i-n diode modulator
measured at 1. O-GHZ and l-mW input power.

Since carrier phase modulation is inherent in the

amplitude modulation of most microwave amplifiers,

the other logical alternative is using a passive or ab-

sorption-type modulator, such as the p-i-n diode. Using

a microwave network analyzer, amplitude and phase

data were taken on such a device. This instrumentation

provided a means of obtaining phase data accurate to a

fraction of a degree so that the phase performance of the

modulator could be accurately predicted. The ampli-

tude and phase data plotted in Fig. 6 indicate almost

negligible phase shift until the amplitude is at least 20

dB down. Using a computer to determine the appro-

priate current input function to produce a Gaussian

envelope function, it was found that a cosine-squared

current pulse approximated the desired input pulse to

within 3 percent.

Using Lagrange interpolation on the amplitude and

phase data, and assuming a cosine-squared input cur-

rent function, the spectrum of the output envelope was

computed. At — 40 dB the computed spectrum was

within less than 2 dB of the spectrum of an ideal Gaus-

sian pulse, Then using an HP 33ooA function generator

with an HP 3302A trigger/phaselock, the cosine-

squared pulses shown in Fig. 7 were produced to drive

the p-i-n diode modulator. Using a microwave spectrum

analyzer the resultant spectrum shown in Fig. 8 was

measured and found to be within 1 dB of the predicted

spectrum down to — 50 dB.

This spectrum was realized at a 1 -mW power level;

therefore, linear amplification must be used to obtain

the power output necessary. When used as linear am-

plifiers, klystrons have little phase modulation, but there

is an inevitable engineering tradeoff. The efficiency of a

linear amplifier is considerably less than that of an am-

plitude-modulated output stage, so this is a tradeoff of

power consumption and the cost of the output stage

for spectrum conservation.

CONCLUSIONS

The measurement on the p-i-n diode modulator il-

lustrated that digital computation can accurately pre-

dict the performance measured with a spectrum ana-
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lyzer. By combining the previous method with the

simulation programs used in the design of modern micro-

wave devices, spectral performance can be included in

the basic design criteria of the device. The problems of

phase modulation will then be apparent at the outset of

a developmental program rather than a “patch job” at

the conclusion. With this approach to system design,

alternatives such as a low-level absorption p-i-n diode

modulator and linear power amplification can be eval-

uated before a commitment is made.

NOMENCLATURE

A (co) Real part of F(o).

B (co) Imaginary part of F(a).

j(~) Pulse amplitude function.

F(a) Fourier transform of the pulse.

p(t) Pulse carrier phase shift.

O Stationary phase associated with the amplifier

and transmission lines.

j.~~.

K Maximum phase deviation.

R,n Error for 2n steps.

SZn Value of the integral for 2n steps.

S. Value of the integral for n steps.

t Time.

u Radian frequency.

UC Radian carrier frequency.

V=co-coc.

27- Total width of the pulse.

T Half amplitude width.
VT

~ Normalized frequency.

APPENDIX I

SPECTRUM OF PULSE-MODULATED CARRIER

WITH PHASE SHIFT

Applying the forward Fourier integral transform to a

carrier with simultaneous amplitude and phase modula-

tion yields:

F(u) = ~ ‘f(t) cos [cdGt+ p(t) + O] exp (–jtit)dt (3)
—w

= A (u) + jB(ti) (4)

where

s

.

A (co) = f(t) Cos [mat+ q(t) +0] Cos ddt (5)
—cc

s

m

B (LO) = f(t) cos [tit + p(t) +0] sin atdt. (6)

—m

Since only pulses of finite duration are to be considered,

f(t) = o, for ltj >-r.

IJsing the identity for the cosine of the sum of two angles

gives

.4 (u) =
s

‘f(t) COS (&t COS [q(t) + (?] COS cotdt—,
.s‘j(t)sin ~ctsin [q(t) + 19] cos utdt

—r

where the constant O accounts for phase shift in

1971

(7)

the

microwave amplifier and transmission lines. Since its

time derivative is zero, it will not contribute to the fre-

quency spectrum and need not be considered further.

A (LO) =
s

‘j(t) COS q9(t) [COS Cdct COS ut]dt
—,

— s‘j(t)sin p(t)[sin ~,t cos d]dt. (8)
—T

Using the identities for trigonometric products,

A (CO) = ; jrj(t) COS ~(f) COS [(co + coc)t]dt

T

+ ~ ff(t) CCIS q(t) COS [(w – w)t]dt
,

1’

J
~ _ j(t)sin p(t)sin [(a+ mC)t]dt——

r

+ ~ f~f(t) sin p(t) sin [(o – ~C)t]dt (9)
T

where two integrals apply to the positive frequencies

and two to negative frequencies. For microwave fre-

quencies, these integrals are sufficiently separated that

the negative frequency integrals do not contribute to the

spectrum at positive frequencies. Thus the second and

fourth integrals are the only ones of interest. Substitut-

ing v = (u —aJ yields:

sA (V) = ; _’j(t) COS q(t) COS vtdt
T

+ ~ f_’f(t) sin q(t)sin vtdt. (lo)
,

Assuming p(t) and~(t) symmetrical implies

sTA (V) = j(t) COS ~(t) COS vtdt, (11)
o

A similar derivation leads to:

s
B(v) = + _’~(t) sin p(t) cos vtdt

,

— ~ f ‘f(t) cos g(t) sin vtdt (12)
—,

and for p(t) and ~(~) symmetrical

B(v) = s‘j(t)sin q(t) cos vtdt. (13)
0
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Integrals (11) and (13) are the ones that must be we obtain

evaluated to find the spectrum of a symmetrical pulse- . —

modulated carrier. A (f) =
d

~exp(–p) – $
d

$ exp (–p/3)
a

APPENDIX II —

INFINITE SERIES APPROXIMATION TO THE SPECTRUM OF +:
.d

~ exp (–p/5) (18)

A GAUSSIAN PULSE WITH GAUSSIAN PHASE SHIFT

Consider
where

p = #f2/a.

f(t) = exp (– at’) By a similar derivation

and
.

p(t) = K-f(t) B(f) = K
d

~exp(–p/2) –~
.(

~~ exp (– p/4)

where —

a=41n2, for unity half amplitude width +$
d

&exp (–-p/6) . . . . (19)1

K = maximum phase shift
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will give the desired spectrum. [1]

Using the Taylor series approximation for cos

[K exp (–at’) ], [2]

A (f) = J’ m [exp (–at’) – $ exp (–3at’) [3]

o
[4]

+ ~ exp (–5at2) ..- 1COS 2~ftdt (16) N

‘6] 1956 p 394
and since [7] R. ~urnming and E. Goldfarb, “Flat-top pulses with high ef-

—

s

m

d

ficiency and confined spectra, “ Microwm,e J., vol. 11, no. 10, Ott.
1968, pp. 37–44.

exp (—pt2) cos 2~ftdt = x exp (— ~zf 2/,8) (17) [8] J. R. Ashley, “Klystron amplifiers for TACAN and VORTAC, ”

o B Sfierry Eng. Ren., vol. 17, no. 3, Fall 1964, pp. 20-24.
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