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Abstract—Using a digital computer the spectrum of a Gaussian
envelope pulse can be evaluated to accuracies of better than 0.01 dB
over a dynamic range of 100 dB. This technique was used to in-
vestigate the problems in existing microwave transmitters. From such
a study a low-level absorption-type modulator followed by linear
power amplification is a logical method. A commercially available
p-i-n diode modulator was then measured on a microwave network
analyzer, and, from the resulting amplitude and phase data, the
spectrum was computed. The computed prediction of the spectrum
was then compared to the measured spectrum and found to agree
within 1 dB to —50 dB.

INnTRODUCTION
WITH THE RAPIDLY increasing use of the

microwave bands, conservation of spectrum has
become a prime consideration in the design of
new systems and the maintenance of existing ones. One
solution to the problem lies with shaped pulses of con-
fined spectrum, such as the Gaussian pulses presently
being used in the VORTAC air navigation system. How-
ever, a perfect Gaussian envelope cannot be physically
realized because of its infinite length; furthermore, the
amplitude distortion and phase-modulation character-
tics inherent in the modulation of microwave power
amplifiers cause spectral spreading. In order to investi-
gate the problems of proposed confined-spectrum sys-
tems and evaluate possible solutions, a means of in-
expensive spectrum computation must be available.
Mathematically, the spectrum of a pulse can be
simply described by its Fourier transform; perhaps not
so simple is the evaluation of the resulting integral

Flw) = fwf(t) cos (wet + o(t) + 0) exp (—jwb)dt. (1)

Previous studies [1], [2] have been directed at closed-
form solutions for (1) for specific cases of amplitude
distortion and phase shift. Since spectrum computa-
tion is a matter of evaluation of an integral, the use of a
digital computer is the logical choice over the somewhat
tedious (sometimes impossible) task of mathematically
obtaining a closed-form solution.

DI1GITAL INTEGRATION

In theory [3], if a time function is sampled at the
Nyquist rate, sufficient information is available for
complete determination of the frequency spectrum;
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Fig. 1. The variation of the integrand of (11) with respect to time.

however, there exists an immense gap between present
numerical techniques and the theoretical minimum.
In the case of the VORTAC Gaussian pulse, evaluation
of (1) would mean integrating for 1100 cycles of cos
(wot+o(t)+0) (i.e., pulsewidth =11 us, carrier frequency
= 1000 MHz), or a theoretical minimum of 2200 samples
for each point of the computed spectrum. Since the only
spectrum point of interest should be near the carrier
frequency, modulation theory can be used to reduce the
complexity of the computation. In Appendix I, through
the use of modulation theory and the additional assump-
tions of a symmetric amplitude function and a sym-
metric phase function, (1) is reduced to evaluating two
integrals (11) and (13) at the modulating frequency.
The magnitude of the spectrum is then

F@v) = v/ A2() + B(»). 2)

If we look at the form of the integrand of (11) for a
Gaussian pulse with Gaussian phase shift, the function
rapidly decays to zero (see Fig. 1). It is interesting to
note that at the frequency illustrated in Fig. 1 the
amplitude of the spectrum is 100 dB down (showing an
extreme case), and even it appears to be well behaved.

To gain some knowledge of the sampling necessary
for the accuracy and dynamic range desired, a Rom-
berg integration® technique was used on the truncated
Gaussian pulse with Gaussian phase shift. The com-

! Romberg integration [4] consists of trapazoidal rule with re-
peated interval halving and successive application of Richardson's
extrapolation.
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TABLE 1I

1060 THIS IS A PHOGhAM 10 CALCULATE THE SPECIRUM UF A PULSE WI1H
110C CARKIEK PHASE SHIFi» USING SIMPSON®S hULE IN1EGHA1ION

120 DIMENSION A(257)»B(257)
130 COMMON FUNGA» FUNCBs PHASE
140 PI2=6283165071796

150 PHASE=45

160 WIDTH=2.

170 NSTEP=128

180 FPRINT 100,WIDTH, PHASE,NSTEP
190 H=WIDTH/FLOAT(NSIEP)

200 PHASE=PHASE#F12/360.

210 T=0.

£20 J1=NSIEP+1

230 DO 20 J=1,J1

240 CALL PFULSE(T)

250 ACJI=FUNCA

260 B(J)=FUNCB

270 20 1=1+H

260C SIMPSON WEIGHTING OF DATA FOINTS (1s45254s000525451)
290 DO 30 J=2,NS1EP

300 ACDI=ALN+ALD

310 30 BWII=B(JI+BLI)

320 DO 35 J=2,NS1EP,2
330 ACJI=ACII+ALD)

340 35 B(JI=BIJI+BLS)

350C I1ERATION 1HKOUGH 1HE FRRUQUENCIES
360 DO 40 NF=1,36,2

370 FHEQ=FLOAT(NF=1)%s1
380 W=PI2%FhEG

390 SPECTA=AC])

400 SPECIB=B(1)

410 1=H
420C SUMMATION OF SIMPSON WEIGHTED TEHMS

430 DO 50 I=2,J1

440 COSWI=COSCW*T)

450 SPECTA=SPECTA+A(I)*COSWT
460 SPECTB=SPECTB+BCI)*COSW1
470 S0 1=T+H

480 SPECTA=SSPECTA*2+%H/ 3e
490 SPECTB=5PECTB*2e%H/ 3«

500C DETEKMINES THE MAGNITUDE OF THE SPECTRUM Al A FREQUENCY

510 FOKYEA=SQKT ( SPECTA*SPECLA+SPECTB*SPECIB)

520 IF(NF~2)60,70,70

530 60 AO=FOLKYEA

540 70 DB=20«*ALOGI0(FOKYEA/AQ)

550 PHINT 101,FBEQ, FORYLA, DB, SPECTA, SPECTB

560 40 CONTINUE

570 101 FORMATCIH »F4¢2sF16+8,F943,F17.8,F13.8)

580 100 FORMATC(™SPECTIhUM OF A NORMALIZED GAUSSIAN PULSE IN NORMALIZEL"»
$90& " FREQUENCY'//"PULSE ThUNCATED AT T=+0h="sF6.3/

600& "GAUSSIAN PHASE SHIF1 WITH MAXIMUM PHASE ANGLE",F6els

610& " DEGHEES"/"NUMBEK OF STEPS PEh INTEGHAL",15///"FREQUENCY "
620& *AMPLITUDE DB™» 11Xs "COSCPHI? SINCPHIY™)

630 siop

640 END

650C SUBROUTINE THAT CALCULATES 1HE AMPLITUDE FUNCTION AND PHASE

660C SHIFT FOh THE POINTS USED IN THE NUMERIC INTEGHATION

670 SUBROUTINE PULSE(T)

680 COMMON FUNCA,FUNCB» PHASE

690 GAUSSN=EXP(~2+7T258872224%T*1)
700 GPHASE=GAUSSN*PHASE

710 FUNCA=GAUSSN*COSCGPHASE)

720 FUNCB=GAUSSN*SIN(GPHASE)

730 HETURN

740 END

putation was taken out to 14 interval halvings on a CDC
6400 (16 384 steps per integral), but the integral con-
verged to the desired accuracy in at most 256 steps in-
dicating the stability of the problem.

From the information gained by the Romberg in-
tegration, it was decided that the Simpson’s rule
algorithm for numeric integration would provide the
necessary accuracy with minimal programming effort.
A program was then written for a General Electric 400
series time-shared computer, and the case of Gaussian
phase shift was investigated. The results were then
checked against the analog computer data obtained
earlier and the available closed-form solutions [2]. As a
further check on the computer data, the pulsewidth
was increased to improve the approximation of the
true Gaussian function and an infinite series was used
to approximate the sine and cosine functions (see Ap-
pendix 11). In every check made on the digital computer
generated spectrums, they were found to be accurate to
better than 0.001 dB over a dynamic range of 100 dB
and time was minimal. A sample program for the
Gaussian phase shift case is shown in Table I, and Table
11 is the resulting printout of the program. The cost of

SPECTRUM OF A NOKMALIZED GAUSSIAN PULSE IN NORMALIZED FREQUENCY

PULSE TRUNCATED AT T=+0R- 2.000
GAUSSIAN PHASE SHIFT WITH MAXIMUM PHASE ANGLE 45.0 DEGREES

NUMBER OF STEPS PER INTEGRAL 128
FREQUENCY AMPLITUDE B COS(PHI) SINCPHI)
0+00 1.03932355 0000 088233293 054925589
Q.20 090673992 ~1.185 0674964359 0451010957
0440 0.60921902 “44640 045209347 040834174
Ce60 033254613 ~9.898 017759901 0.28115035
080 0«16753557 -15.853 0402506732 016564962
100 0408604963 =21.640 ~+02395861 008264699
1.20 004248383 =-274771 -+02535821 003408573
1e40 0401910835 =~34.711 ~+01570886 001087939
1.60 0.00804784 =~42.221 =+00778604 0+00203597
1.80 0.00334225 ~49.854 ~+00331836 ~-+00039890
2.00 0.00138552 -57.503 -.00122859¢2 ~-«00064558
2420 000055789 ~-65.404 ~+00037622 «+00041194
2440 0400021823 =~734557 ~+ 00008737 =+00019998
2460 0.00008249 ~82.007 «+00000412 ~+00008238
2480 0.0000309%F -90.533 000000869 -+00002966
3.00 0400001107 -99+453 0400000605 =+00000927
3+20 0.00000524 ~1054950 0.00000467 =+00000238
340 0.00000045 ~127+312 0.00000019 =+ 00000040

the time for computing Table II was about 68 cents,
not counting the 4 min of my own time spent operating
the terminal.

ESTIMATION OF STEP SIZE

In order to determine the step size necessary for
functions for which there is no closed-form solution
(the only problems of importance), a purely numerical
method was used. Although the equation for the error
in Simpson’s rule integration is well known [5], it re-
quires the evaluation of the fourth derivative of the
integrand which is very cumbersome if the amplitude
and phase function become the least bit complicated.
Instead, the method suggested by Britton [6] for eval-
uation of the approximate error of Simpson’s rule was
used:

:gﬁn - :gn
" 15
where
R, error for 2n steps;
Se, the value of the integral 2z steps;
S, the value of the integral for » steps.

This technique gave excellent results for the Gaussian
pulse, as well as for confined-spectrum flat-top pulses.
When a step size was determined using this method, the
calculated spectrum for the flat-top pulse always was
within the error estimation when compared to avail-
able closed-form solutions [7]. In all of the amplitude
and phase {functions tried so far, never over 20 steps per
cycle of the highest frequency term were necessary to
gain accuracy of better than 0.01 dB out to — 100 dB.

APPLICATION OF SPECTRUM COMPUTATION

Obviously, the previous method of spectrum com-
putation is fast and inexpensive, but it is only a tool in
investigating problems in existing and proposed sys-
tems. To illustrate the use of this approach, the spectral
performance of the present VORTAC was investigated.
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Fig. 2. Measured spectrum of a VORTAC
microwave power amplifier.

The measured spectrum plot in Fig. 2 was obtained from
a previous study [8].

With the advent of negative-grid gun klystrons the NORMALIZED FREQUENCY
problems of realizing the desired amplitude function is
greatly simplified, but the measured performance of
this amplifier by no means lives up to the spectrum of a
true Gaussian pulse. Although the appearance of lobes
would indicate that the Gaussian pulse was truncated
too soon, the computed spectrum for the pulsewidth
used indicated the lobes caused by truncation should be
more than 100 dB down.

When a klystron is amplitude modulated, some angle
modulation will occur because, like most microwave
devices, the klystron relies on transit time for its oper-
ation. For this reason the effect of phase modulation
was considered as a possible cause of the wide spectrum
shown in Fig. 2. The spectrum plots in Fig. 3, which
show the general broadening of spectrum associated
with the addition of Gaussian carrier phase shift, were
obtained from digital computer data. This general
broadening does not account for the lobes which occur
in the measured curve. As another possibility the effect
of a cosine-squared phase function was considered. In
Fig. 4 the spectrum of the Gaussian pulse with cosine-
squared phase shift deviates drastically from the form
seen in Fig. 3. The cosine-squared function is very sim-
ilar in appearance to the Gaussian as illustrated in the
normalized amplitude versus phase graph in Fig. 5. In
light of the accuracy of measuring carrier phase shift at
the time of the design of the VORTAC system, it is
questionable if the difference between Gaussian and a)
cosine-squared phase shift could have been detected in 30  -20  -lo o w0 y f
the laboratory. Yet it appears that the computed spec-

trum from the cosine-squared phase shift much more

closely approximates the measured spectrum data than

£ | Fig. 4. Spectra of Gaussian pulses with
the Gaussian phase shift case. cosine-squared phase shift.

T T T
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Fig. 3. Spectra of Gaussian pulses with
Gaussian phase shift.
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Fig. 6. Performance of the HP 8731b p-i-n diode modulator
measured at 1.0-GHz and 1-mW input power.

Since carrier phase modulation is inherent in the
amplitude modulation of most microwave amplifiers,
the other logical alternative is using a passive or ab-
sorption-type modulator, such as the p-i-n diode. Using
a microwave network analyzer, amplitude and phase
data were taken on such a device. This instrumentation
provided a means of obtaining phase data accurate to a
fraction of a degree so that the phase performance of the
modulator could be accurately predicted. The ampli-
tude and phase data plotted in Fig. 6 indicate almost
negligible phase shift until the amplitude is at least 20
dB down. Using a computer to determine the appro-
priate current input function to produce a Gaussian
envelope function, it was found that a cosine-squared
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Fig. 7. Cosine-squared bias current pulse supplied to a p-i-n diode
modulator to produce a nearly Gaussian envelope 3.1-us pulse at
the output. )
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Fig. 8. Measured spectrum at the output of the p-i-n diode mod-
ulator with the envelope adjusted to 3.1 us nearly- Gaussian
shape.

current pulse approximated the desired input pulse to
within 3 percent.

Using Lagrange interpolation on the amplitude and
phase data, and assuming a cosine-squared input cur-
rent function, the spectrum of the output envelope was
computed. At —40 dB the computed spectrum was
within less than 2 dB of the spectrum of an ideal Gaus-
sian pulse. Then using an HP 3300A function generator
with an HP 3302A trigger/phaselock, the cosine-~
squared pulses shown in Fig. 7 were produced to drive’
the p-i-n diode modulator. Using a microwave spectrum
analyzer the resultant spectrum shown in Fig. 8 was
measured and found to be within 1 dB of the predicted
spectrum down to — 50 dB.

This spectrum was realized at a 1-mW power level;
therefore, linear amplification must be used to obtain
the power output necessary. When used as linear am-
plifiers, klystrons have little phase modulation, but there
is an inevitable engineering tradeoff. The efficiency of a
linear amplifier is considerably less than that of an am-
plitude-modulated output stage, so this is a tradeoff of
power consumption and the cost of the output stage
for spectrum conservation.

CONCLUSIONS

The measurement on the p-i-n diode modulator il-
lustrated that digital computation can accurately pre-
dict the performance measured with a spectrum ana-
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lyzer. By combining the previous method with the
simulation programs used in the design of modern micro-
wave devices, spectral performance can be included in
the basic design criteria of the device. The problems of
phase modulation will then be apparent at the outset of
a developmental program rather than a “patch job” at
the conclusion. With this approach to system design,
alternatives such as a low-level absorption p-i-n diode
modulator and linear power amplification can be eval-
uated before a commitment is made.

NOMENCLATURE
A(w) Real part of F(w).
B(w) Imaginary part of F(w).
f(&) Pulse amplitude function.
F(w) Fourier transform of the pulse.

©(t) Pulse carrier phase shift.
6 Stationary phase associated with the amplifier
and transmission lines.
j=v—1
K Maximum phase deviation.
Rs, Error for 2z steps.
S, Value of the integral for 27 steps.
S, Value of the integral for # steps.
t Time.
w Radian frequency.
w, Radian carrier frequency.
V=0 —w,.
27 Total width of the pulse.

T Half amplitude width.
vT

m

Normalized frequency.

AprpeENDIX [

SPECTRUM OF PULSE-MODULATED CARRIER
WwITH PHASE SHIFT

Applying the forward Fourier integral transform to a
carrier with simultaneous amplitude and phase modula-
tion yields:

Flw) = f i @) cos [wit + o(t) + 6] exp (—jwt)dt (3)
= A(w) +jB(w) 4)

where
Alw) = fwf(t) cos [wit + o(t) + 8] cos wtdt (5
Bw) = f i F{&) cos [wet + o) + 6] sin widt. (6)

Since only pulses of finite duration are to be considered,
f =0, for|t] >

Using the identity for the cosine of the sum of two angles
gives

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1971

A(w) = fff(t) o8 w,t cos [(t) + 8] cos wtdl

— fo(t) sin w.! sin [o(?) + 8] cos wtdt  (7)

where the constant 8 accounts for phase shift in the
microwave amplifier and transmission lines. Since its
time derivative is zero, it will not contribute to the fre-
quency spectrum and need not be considered further.

Aw) = frf(t) cos o(f)[cos wt cos wt]dt

—T

- f ' f(® sin o(¢)[sin wit cos wt]dt. (8)

Using the identities for trigonometric products,

Aw) = %f_:f(t) cos ¢(f) cos [(w + wc)t]dt
+ %f_:f(t) cos o(f) cos [(w — wo)tldt
— %fif(t) sin o(#) sin [(w + w.)t]dt

+ ;f_:f(t) sin o(¢) sin [(w — wo)t]dt  (9)

where two integrals apply to the positive frequencies
and two to negative frequencies. For microwave fre-
quencies, these integrals are sufficiently separated that
the negative frequency integrals do not contribute to the
spectrum at positive frequencies. Thus the second and
fourth integrals are the only ones of interest. Substitut-
ing v =(w—uw,) yields:

Ap) = ~;—j\rf(zf) cos ¢(f) cos vidt

1 T
+ Y f J({) sin (&) sin »tdt.  (10)
Assuming ¢(¢) and f(£) symmetrical implies
AQp) = f () cos ¢(t) cos vidl. 1
0

A similar derivation leads to:
1 T .
B@) = ~2~f f(@) sin ¢(¢) cos vidt

1 T
- 7f F(®) cos o(f) sin vtdt  (12)
and for ¢(£) and f(/) symmetrical

B@) = frf(t) sin ¢(#) cos vidt. (13)
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Integrals (11) and (13) are the ones that must be
evaluated to find the spectrum of a symmetrical pulse-
modulated carrier.

AprpPENDIX II

INFINITE SERIES APPROXIMATION TO THE SPECTRUM OF
A GAussiaN PuLsE wiTH GAUSSIAN PHASE SHIFT

Consider
f(t) =exp (—at?)
and
o() = Kf(?)
where
a=4In2, for unity half amplitude width

K = maximum phase shift

so that evaluation of

A(f) = fw exp (—atz) cos [K exp (—at?)] cos 2rdtdi (14)

B(f) = f exp (—at?) sin [K exp (—at?)] cos 2nftdt  (15)

will give the desired spectrum.

Using the Taylor series approximation for cos
[K exp (—at?)],

[} KZ
A(f) = f [exp (—at?) — E—exp (—3at?)

2

+ e exp (—5a?) - - - } cos 2xftdt  (16)

and since

fow exp (—pt2) cos 2nfidt = ,‘/% exp (—#%%/8) (7)
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we obtain
A(f) = a—eXp( #)"*1/3‘6\13'( ~u/3)
g Zen w19
where

u = 1Y%/ a.

By a similar derivation

B(f) = V—e\p( w/2) —— 4/3[—“1)( 1/4)
£ 6 19
T 6—e‘<P( -1/6) - (19)
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